EFFECT OF REVERSE BIOFLOC SYSTEM WATER QUALITY ON GROWTH AND SURVIVAL OF RED TILAPIA (Oreochromis niloticus) IN CIANJUR, WEST JAVA
DOI:
https://doi.org/10.31258/ajoas.8.1.20-32Keywords:
Reverse Biofloc, Water Quality, Survival, Red TilapiaAbstract
This study aims to determine the effect of a reverse biofloc system on the water quality, growth, and survival of red tilapia (Oreochromis niloticus). The research method is experimental with a completely randomized design (CRD). The containers used were 13 buckets with a capacity of 100 L, with one control and three treatments, each repeated four times. Each container was filled with 10 red tilapia fish. Treatments included probiotics with doses of 5 mL, 10 mL, and 15 mL. The results showed that the treatment with 15 mL probiotics produced the highest fish weight growth, with an average of 558.75 g and an average length growth of 9.1 cm. Analysis of variance (ANOVA) showed significant differences in fish weight and length growth, indicating that probiotic concentration influenced fish growth. All treatments' survival rates (SR) reached 100%, indicating that the inverted biofloc system can maintain optimal environmental conditions. Water quality in the reverse biofloc system did not significantly affect fish growth, so other factors, such as microorganism density and nutrient availability, played a role. This study concludes that the reverse biofloc system with the addition of 15 mL probiotics provides the best results in increasing the growth of red tilapia without affecting its survival.
Downloads
References
1. Firmani, L. Economic potential and challenges in red tilapia aquaculture in Indonesia. Indonesian Fisheries Journal, 2021; 19(3): 98–112.
2. [KKP] Kementerian Kelautan dan Perikanan. Laporan produksi perikanan budidaya 2021–2022, 2023.
3. Sari, D., Wijaya, B., & Ramadhan, P. Declining fish production in West Java: Causes and mitigation strategies. Journal of Indonesian Aquaculture, 2020; 23(3): 125–140.
4. [BSN] Badan Standar Nasional. Standar nasional Indonesia tentang kualitas air untuk budidaya perikanan. Badan Standarisasi Nasional, 2009.
5. Gunawan, A., & Kartika, M. Water quality management in intensive aquaculture systems: A review. Aquaculture and Fisheries Science, 2019; 37(2): 211–225
6. Diansari, N., Rahayu, S., & Prasetyo, W. Stocking density and its effect on ammonia accumulation in aquaculture ponds. Marine and Fisheries Journal, 2013; 12(4): 207–215
7. Subagyo, H., & Saputra, D. Water quality deterioration in high-density fish farming systems. Journal of Aquatic Environment, 2015; 14(2): 34–47
8. Bossier, P., & Ekasari, J. Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology, 2017; 10(5): 1012–1016
9. Lee, C., Nguyen, T., & Park, S. Challenges and solutions in implementing biofloc technology for sustainable aquaculture. Aquaculture Engineering, 2019; 47(1): 55–67.
10. Alimuddin, R., Saputra, B., & Wijaya, T. Reverse biofloc system and its impact on tilapia farming productivity. Journal of Aquatic Sciences, 2022; 34(2): 145–159.
11. Darmawan, H., Priyanto, A., & Sudirman, R. (2016). The role of probiotics in aquaculture: Improving water quality and fish health. Indonesian Journal of Fisheries Science, 2016; 28(1): 87–98.
12. Ombong, R., & Salindeho, L. Effects of probiotics on feed conversion ratio and growth performance of tilapia. Journal of Fish Biology, 2019; 31(4): 87–101.
13. Ali, M., Jones, P., & Smith, R. Effect of probiotics on water quality and fish growth in biofloc systems. Aquaculture Research, 2017; 48(5): 1123–1135
14. Ekasari, J., Crab, R., & Verstraete, W. (2014). Primary nutritional content of bioflocs cultured with different organic carbon sources and salinity. HAYATI Journal of Biosciences, 2014; 21(2): 67–72.
15. Effendi, I. Biologi perikanan. Aquaculture Magazine, 2002; 24(1): 38–45.
16. Ricker, W.E. Fish physiology Vol. VIII. Bioenergetics and Growth. In Fish Physiology Vol. VIII. Bioenergetics and Growth (pp. 677–743). Academic Press, 1979.
17. Hepher, B., & Pruginin, Y. Commercial fish farming with special reference to fish culture in Israel. John Willey and Sons, 1981.
18. Tacon, A.G.J., & Metian, M. Feed matters: Satisfying the feed demand of aquaculture. Reviews in Fisheries Science and Aquaculture, 2015; 23(1): 1–10.
19. De Silva, S.S., & Anderson, T.A. Fish nutrition in aquaculture. Aquaculture Series, 319. Chapman & Hall, 1995.
20. Stickney, R.R. Aquaculture. CABI Publishing, 2005.
21. Boyd, C.B., & Tucker, C.S. Pond aquaculture water quality management. Springer Science. Business Media, 1998.
22. Avnimelech, Y. Control of microbial activity in aquaculture systems: active suspension ponds. Reprinted from World Aquaculture, 2012; 34(4): 19–21.
23. Wang, Y., Zhang, C., & Fan, W. Effects of probiotics on growth performance and health status of fish in aquaculture, 2019.
24. Altman, D.G., & Bland, J.M. Patterns of tree replacement: canopy effects on understory pattern in hemLock-northern hardwood forests. BMJ, 2005; 331.
25. Zokaeifar, H., Balcázar, J.L., Saad, C.R., Kamarudin, M.S., Sijam, K., Arshad, A., & Nejat, N. Effects of Bacillus subtilis on the growth performance, digestive enzyme activity, and disease resistance of white shrimp (Litopenaeus vannamei). Fish & Shellfish Immunology, 2012; 33(3): 683–689
26. Sokal, R.R., & Rohlf, F.J. Biometry. The principles and practice of statistics in biological research. In Systematic Zoology. W.H. Freeman and Company, 2012.
27. Hai, N.V. The use of probiotics in aquaculture. Journal of Applied Microbiology, 2015; 119(4): 917–935.
28. Crab, R., Defoirdt, T., Bossier, P., & Verstraete, W. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 2012; 356–357, 351–356.
29. Martínez-Córdova, L.R., Emerenciano, M., Miranda-Baeza, A., & Martínez-Porchas, M. Microbial-based systems for aquaculture of fish and shrimp: An updated review. Reviews in Aquaculture, 2014; 6(2): 1–18.
30. Baktiar, A. Metode perhitungan tingkat kelangsungan hidup ikan budidaya. Balai Riset Perikanan Budidaya Air Tawar, 2006.
31. Akhmad, T. Analisis tingkat kelangsungan hidup ikan sepat rawa pada sistem budidaya intensif. Jurnal Akuakultur Indonesia, 2011; 10(2): 45–52.
32. Craig, J.P., Nelson, J. D., Azar, D. T., Belmonte, C., Bron, A. J., Chauhan, S. K., de Paiva, C. S., Gomes, J. A. P., Hammitt, K. M., Jones, L., Nichols, J. J., Nichols, K. K., Novack, G. D., Stapleton, F. J., Willcox, M. D. P., Wolffsohn, J. S., & Sullivan, D.A. TFOS DEWS II Report Executive Summary. Ocular Surface, 2017; 15(4): 802–812.
33. Boyd, C.E. Water quality: An introduction. Springer, 2018.
34. Merrifield, D. L., Dimitroglou, A., Foey, A., Davies, S. J., Baker, R. T. M., Bøgwald, J., Castex, M., & Ringø, E. The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture, 2010; 302(1–2): 1–18
35. El-Sayed, A., & Kamel, M. Climatic changes and their role in emergence and re-emergence of diseases. Environmental Science and Pollution Research, 2020; 27(18): 22336–22352.
36. Hua, K., Cobcroft, J.M., Cole, A., Condon, K., Jerry, D.R., Mangott, A., Todd, E.V., & Strugnell, J.M. The future of aquatic protein: Implications for protein sources in aquaculture diets. Reviews in Aquaculture, 2019; 11(3): 601–614
37. Umarudin, U., Surahmaida, S., Alta, R., & Ningrum, R.S. Preparation, characterization, and antibacterial of Staphylococcus aureus activity of chitosan from shell of snail (Achatina fulica F). Biota, 2019; 12(1): 22–31.
38. Kusmini, I.I., Radona, D., & Putri, F.P. Pola pertumbuhan dan faktor kondisi benih ikan tengadak (Barbonymus schwanenfeldii) pada wadah pemeliharaan yang berbeda. Limnotek Perairan Darat Tropis di Indonesia, 2018; 25(1): 1–9.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Rahma Windy Sah Putri, Iskandar Iskandar, Rita Rostika, Siswoyo Siswoyo, Gatot Hari Priorwirjanto (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.